宇宙中,太阳以及其他恒星内部源源不断的能量,是通过“核聚变”方式产生的。核聚变是两个轻原子核聚合,生成新的更重原子核的过程,其反应释放的能量巨大,且不排放二氧化碳,与核裂变相比,它既不产生核废料,辐射也极少,因此被称为人类的终极能源。日前,美国劳伦斯利弗莫尔国家实验室国家点火装置实现了人类历史上首次激光可控核聚变点火:实验输入2.05兆焦耳激光能量,产生了3.15兆焦耳聚变能量输出(大约是电动汽车行驶10公里所需的能量),实现“净能量增益”。这是人类能源史上的重大突破,从科学原理和工程技术上验证了未来核聚变能源的可行性,开启了人类进入清洁能源时代的大门。
能源自由 可控核聚变
1905年,爱因斯坦发表了论文《论动体的电动力学》,建立了狭义相对论,推导出了物理学史上最著名的方程E=mc2,能量(E)等于物质的质量(m)乘以光速(c)的平方。这个方程告诉人们,如果能够把物质的质量转化为能量,将可以获得巨大的能量收益。1克静止物质对应的能量相当于2.1万吨TNT炸药爆炸释放的能量。
随着后来的研究,人们发现原子核与原子核或原子核与中子等粒子相互作用产生新原子核的过程中,就会出现质量亏损的现象,亏损的小部分质量会以巨大的能量形式向外释放,这个过程被称为核反应。
核裂变是一个重原子核分裂为两个或多个较轻原子核的过程,裂变后原子核和粒子的总质量小于裂变前原子核和粒子的质量之和,质量能量转化,裂变过程发出巨大能量。原子弹爆炸、核电站等都是利用了核裂变原理。
而核聚变是两个轻原子核融合为一个较重原子核的过程,聚变前后同样存在质量差,质量能量转化,聚变过程释放巨大能量。太阳等恒星内部产生的能量主要来自核聚变过程,氢弹的巨大放能也来自聚变过程。
相对于核裂变,核聚变的燃料都是轻元素。如氢的同位素(氘D,氚T),氘和氚聚变是自然界最容易发生的聚变,目前可控核聚变研究采用氘和氚为聚变燃料。核聚变能够用少量的燃料收获巨大的能量。据估计,如果要获得相同的能量,需要的核聚变氘氚燃料,核裂变235U燃料和煤炭的质量之比约为1:4:8000000。换句话说,一克氘氚燃料聚变所获得的能量就相当于燃烧8吨石油才能产生的能量。
20世纪50年代,人类开始探索在实验室实现核聚变,即可控核聚变。然而,这却是一件非常困难的事情——原子核带正电,它们之间存在很强的排斥力,要让聚变发生,原子核必须具有极高的动能才能够克服排斥力,这要求燃料需要被加热到超过1亿摄氏度的高温。要让足够多的聚变发生,单位体积中的原子核数目必须大,这样原子核之间才能够频繁地碰撞、发生聚变。当然,让原子核长时间处于能够发生聚变的状态,可以获得更多的聚变能量。正是上述原因,一个系统的聚变性能与原子核平均动能(温度)、原子核数密度(密度)和原子核处于能够发生聚变状态的时间(约束时间)三者直接相关。
几十年来,科学家们已经取得巨大的进步,但仍然没有能够达到足以商用发电的水准,甚至曾一直没有实现输出能量大于输入能量的能量增益。这是因为没有任何一种容器可以承受超过一亿摄氏度的高温,并且在如此高的温度下,氘氚燃料呈现出电子和原子核分离的混合状态,被称为等离子体态。等离子体态下的物质在内部会产生复杂的电磁场和不稳定性,使得科学家无法准确预测它的状态,进而难以将这样一个洪水猛兽约束在人类设计的牢笼中并达到聚变条件。
马宏宇,设计学博士。现为武汉理工大学工业设计系教师,副教授,硕士生导师,主要研究产品设计创新与管理,产品美学。已出版专著《产品美学价值的设计创新路径研究》、主编规划教材《设计制图学》,在《包装工程》、《美术大观》、《设计艺术研究》等专业期刊和重要国际会议以第1作者发表中英文论文十余篇。主持并完成省级社科基金项目(后期资助)一项,主持和参与其它省部级和企业项目若干。